

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: VARIOUS				
QUALIFICATION CODE: VARIOUS	LEVEL: 6			
COURSE NAME: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S			
SESSION: NOVEMBER 2022	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER					
EXAMINER(S)	Prof Habauka M Kwaambwa				
MODERATOR:	Dr Euodia Hess				

INSTRUCTIONS				
1. Answer ALL the questions in Sections A and B.				
2	Write clearly and neatly.			
3	Number the answers clearly.			

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT

List of Useful Constants and Equation

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page and a list of useful constants and equation as an attachment)

E. None of the above

There are 10 questions in this section. Choose the correct answer. Each question carries 2 marks.

1.	An ideal gas at 27°C is heated at constant pressure until its volume is doubled. The final temperature is: A. 54°C B. 327°C C. 108°C D. 654°C E. 600°C
2.	Which of the following is not an intensive property? A. Pressure B. Temperature C. Density D. Heat E. Molar volume
3.	For a reversible power cycle, the operating temperature limits are 800 K and 300 K. It takes in 400 kJ of heat. The unavailable work will be: A. 250 kJ B. 150 kJ C. 120 kJ D. 100 kJ E. Zero
4.	If $\Delta G^{\circ} < 0$, then K is If $\Delta G^{\circ} > 0$, then K is If $\Delta G^{\circ} = 0$, then K is A. $> 1, < 1, = 1$ B. $< 1, > 1, = 1$ C. $< 0, > 0, = 0$ D. $> 0, < 0, = 0$ E. $< 1, > 1, = 0$
5.	Which of the following is not one of the assumptions in the derivation of the Clausius-Clapeyron equation? A. $V_{gas} >>> V_{liquid}$ B. Gas behaves as ideal gas, i.e. $V = RT/P$ for 1 mole C. $\Delta H_{vaporisation}$ is independent of temperature in a given range D. Solid \rightleftharpoons Liquid

- 6. A schematic diagram of the variation of concentration of the reactants and products with time for the reaction $3W + X \rightarrow Y + 2Z$ is shown below. Which of the following is the most likely representation of the variation of the concentration of the reactants and products with time?
 - A. I = W; II = X; III = Z; IV = Y
 - B. I = X; II = W; III = Y; IV = Z
 - C. I = W; II = X; III = Y; IV = Z
 - D. I = X; II = W; III = Z; IV = Y
 - E. None of the above

7. Write a balanced reaction for which the following rate relationships are true.

Rate =
$$\frac{1}{2} \frac{d[N_2]}{dt} = \frac{d[O_2]}{dt} = -\frac{1}{2} \frac{d[N_2O]}{dt}$$

- A. $2N_2O \rightarrow 2N_2 + O_2$
- B. $N_2O \rightarrow N_2 + 2O_2$
- C. $2N_2 + O_2 \rightarrow 2N_2O$
- D. $\frac{1}{2} N_2 O \rightarrow \frac{1}{2} N_2 + O_2$
- E. Insufficient information
- 8. The decomposition of $N_2O_5(g) \to NO_2(g) + NO_3(g)$ proceeds as a first order reaction. Which equation below best gives the concentration of N_2O_5 versus time profile?
 - A. $[N_2O_5] = \frac{[N_2O_5]_0}{t_{0.5}}$
 - B. $[N_2O_5] = kt$
 - C. $[N_2O_5] = [N_2O_5]_0 e^{-kt}$
 - D. $\frac{1}{[N_2O_5]} = \frac{1}{[N_2O_5]_0} + kt$
 - E. None of the above

- 9. The values for the change in enthalpy, ΔH , and the activation energy, E_A , for a given reaction are known. The value of E_A for the reverse reaction equals
 - A. EA for the forward reaction
 - B. $-(E_A)$ for the forward reaction
 - C. the sum of $-(\Delta H)$ and E_A
 - D. the sum of E_A and ΔH
 - E. the difference between ΔH and E_A
- 10. The balanced equation for the reaction of nitrogen dioxide and fluorine is

$$2NO_2 + F_2 \rightarrow 2NO_2F$$

The proposed mechanism is

Step 1:

 $NO_2 + F_2 \rightarrow NO_2F + F$

slow

Step 2:

 $F + NO_2 \rightarrow NO_2F$

fast

Which of the following are correct?

- (i) The mechanism supports an experimentally determined rate law of rate = $k[NO_2]^2[F_2]$
- (ii) F is an intermediate
- (iii) The reaction is first order with respect to F_2 .
- A. (i) only
- B. (i) and (ii) only
- C. (i) and (iii) only
- D. (ii) and (iii) only
- E. (i), (ii) and (iii)

SECTION B [80]

There are FIVE questions in this section. Answer all Questions.

QUESTION 1 [12]

State whether each of the following statements is **true** or **false**. If false either correct it or state briefly the reason for its being false.

- (a) $q = \oint dq = 0$ and $\Delta T = \oint dT = 0$, where q and T is the heat absorbed and temperature, respectively. (2)
- (b) The compressibility factor, Z > 1 for many gases at high pressures is attributed to finite size of gas molecules and repulsive forces.(2)
- (c) $\Delta H_{combustion} = \Delta U_{combustion}$ for the combustion reaction (2)
 - $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ (2)
- (d) For the reaction 2C(g) + O₂(g) \rightarrow 2CO(g), $\Delta H_{reaction}^{o} = \Delta H_{f}^{o} (CO(g))$ (2)
- (e) For a perfect crystalline substance, $S_{0^{\circ}C} = 0$. (2)
- (f) $\left(\frac{\partial G}{\partial T}\right)_{P} = S$ and $\left(\frac{\partial U}{\partial T}\right)_{V} = C_{V}$ (2)

QUESTION 2 [13]

(a) State whether q, w, ΔU , ΔH and ΔS are positive, negative or zero for reversible adiabatic expansion of an ideal gas. (5)

(b) A sample consisting of 2.00 mol argon (assume to behave as ideal gas) is expanded reversibly and isothermally at 0° C from 22.4 dm³ to 44.8 dm³. For this process, calculate q, w Δ U and Δ H. (8)

QUESTION 3 [13]

(a) Estimate the enthalpy change of formation for NH₃(g) at 100°C given: (3)

$$\frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g) \rightleftharpoons NH_{3}(g), \Delta H_{f}^{o}(25^{\circ}C) = -46.11 \text{ kJmol}^{-1}$$

 $C_p(N_2, g) = 29.12 \text{ JK}^{-1}\text{mol}^{-1}$

 $C_p(H_2, g) = 28.82 \text{ JK}^{-1}\text{mol}^{-1}$

 $C_p(NH_3, g) = 35.06 \text{ JK}^{-1}\text{mol}^{-1}$

- (b) Calculate ΔG° for 1 mole of N₂O₄ decomposition at 298 K, given K_p = 0.163. If ΔS° for the reaction is 184.2 JK⁻¹mol⁻¹ at 298 K, calculate ΔH° at 298 K. (3)
- (c) The equilibrium constant of the reaction

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

was determined as a function of temperature and the data was fitted using the linear form of the van't Hoff isochore and the result was:

$$\ln K_p = \frac{14080}{T} + 17.85$$

Use these results to obtain ΔH° , ΔS° and ΔG° .

(4)

(d) Is the reaction in (c) above endothermic or exothermic? Give a reason for you answer.

Which linear plot A or B in the diagram below best represents this reaction?

(3)

QUESTION 4 [11]

Using the diagrams I and II below for a given pure liquid, answer the following questions:

- (a) Sketch diagram I and on the same diagram show the effect of solute and label the positions of the melting point and boiling point of both the liquid and solution. (3)
- (b) Calculate the degrees of freedom at A, B and C in diagram II. (3)
- (c) The $\Delta H_{\text{sublimation}}$ of pure liquid is 60.5 kJ/mol, while its $\Delta H_{\text{vaporization}}$ is 48.0 kJ/mol. What is the ΔH_{fusion} of the pure liquid? (2)
- (d) If the boiling point of the pure liquid in (c) is 184.3° C, calculate the entropy of vaporisation (ΔS_V) and comment on the result. (3)

QUESTION 5 [31]

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient, k, if the rate is in moldm⁻³s⁻¹.

(i) Rate =
$$k \frac{[A]^{1.5}}{[B]^{1.5}}$$
 (ii) Rate = $k[A][B]^{0.5}[C]^{1.5}$ (4)

(b) Nitrogen pentoxide (N₂O₅) gas decomposes according to the reaction

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

At 328 K, the rate of the reaction under certain conditions is $0.75 \times 10^{-4} \text{ molL}^{-1}\text{s}^{-1}$. Assuming that none of the intermediates have appreciable concentrations, determine the values of:

(i)
$$\frac{d[N_2O_5]}{dt}$$
 (ii) $\frac{d[NO_2]}{dt}$ (iii) $\frac{d[O_2]}{dt}$

(c) Consider a reaction A \xrightarrow{k} P. The integrated rate law for the reaction is:

$$\frac{1}{[A]} - \frac{1}{[A]_O} = kt$$

- (i) State the two reaction requirements needed in order to derive the equation above. (2)
- (ii) What is the order of the reaction? What are the units of the rate constant if the rate is in mol L⁻¹ min⁻¹? (2)
- (iii) What plot would you construct to determine the rate constant, k, for the reaction? Label the axes on diagram and sketch the graph that you would expect. (3)
- (iv) Derive the half-life expression for this reaction. (3)
- (d) The table below gives experimental data for the half-lives, $t_{0.5}$, of different reactions as a function of the initial reactant concentration, C_0 . Determine the order of each of the three reactions. (6)

	t _{0.5} / min			
C_o / moldm ⁻³	Reaction 1	Reaction 2	Reaction 3	
2	2	120	20	
1	2	60	40	

(e) The following questions refer to the popular demonstration called "Elephants Toothpaste" in which the mechanism is believed to be:

Step 1: $H_2O_2 + I^- \to H_2O + OI^-$ slow Step 2: $H_2O_2 + OI^- \to H_2O + O_2 + I^-$ fast

- (i) Identify the catalyst. (1)
- (ii) Identify the intermediate. (1)
- (iii) Devise the overall chemical equation consistent with the mechanism provided.
 (1)
- (iv) Devise the rate law. (1)
- (v) For majority of the reactions, a catalyst speeds up the reaction by decreasing the energy of activation but for a few reactions, a catalyst speeds up the reaction but the energy of activation increases. Give a brief plausible reason.

(1)

LIST OF USEFUL EQUATION AND CONSTANTS

Van der Waals eqⁿ.
$$P = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2} = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$

Universal Gas constant $R = 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

Boltzmann's constant, $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Planck's constant h = $6.626 \times 10^{-34} \text{ J s}$

Debye-Hückel's constant, A = $0.509 \text{ (mol dm}^{-3})^{1/2} \text{ or mol}^{-0.5} \text{kg}^{0.5}$

Faraday's constant $F = 96485 \text{ C mol}^{-1}$

Mass of electron $m_e = 9.109 \times 10^{-31} \text{ kg}$

Velocity of light $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Avogadro's constant $N_A = 6.022 \times 10^{23}$

1 electron volt (eV) = $1.602 \times 10^{-19} \text{ J}$